

Runtime Checking of Multithreaded Applications with
Visual Threads

Jerry J. Harrow, Jr.

Compaq Computer Corporation, Business Critical Servers Group,
110 Spit Brook Rd, Nashua, NH, USA

Jerry.Harrow@Compaq.com

Abstract. Multithreaded applications are notoriously difficult to design and
build while avoiding defects. Many of Compaq’s customers need to employ
threads to implement high-performance, scalable applications that address their
needs in business and science. In order to ensure their success using threads,
Compaq provides a runtime debugging and analysis tool for multithreaded
applications called Visual Threads. This paper describes the automatic runtime
checking for multithreaded applications incorporated in Visual Threads.

1 Introduction

While the performance of computer systems continues to improve at a rapid rate,
many problems in science and business continue to outstrip the ability of a single
processor. This has given rise to computer systems built using Symmetric
Multiprocessing (SMP), and programming interfaces to enable an application to enlist
those processors. One such programming interface standard is IEEE POSIX
1003.1-1996, which is commonly referred to as pthreads [1]. The POSIX threads
library enables an application to create and control additional threads of execution,
and provides synchronization primitives to allow the threads to coordinate their work.
Java ™ provides similar capabilities through its language syntax. All the threads in
an application run inside the same process and therefore share the same address space,
terminal, and open files. Depending upon the operating system1, the threads may be
scheduled across the available processors, thereby enabling true concurrent execution
of the threads.

The challenges of threads are many. Primary of these challenges is the increased
program complexity caused by the need to synchronize access to shared data
structures, the potential for timing-dependent failures, errors using the programming
interface, and the difficulty of debugging and optimizing the application.

——————
1 Compaq’s OpenVMS and Tru64™ UNIX® operating systems both provide a POSIX threads

library implementation that enables true concurrent execution of threads on systems with
multiple processors.

2 Development of Visual Threads

The genesis of Visual Threads was the observation that many of the problems
reported by our customers in their multithreaded applications were in fact
programming errors on their part. The vision of the development manager for the
threads group was that if we could help customers find these problems, it would
greatly improve customer satisfaction, and reduce support costs. The goal of Visual
Threads therefore became: To help Compaq’s customers succeed with threads.

With almost no other competitive tools available in the industry, the development
team brainstormed to build a list of all common thread-related programming errors
that an application may experience. This list was then prioritized to reflect the
relative usefulness of detecting each error to the programmer. After weighing the
benefits of the various types of tools that could be built, the team decided to focus on
automatic runtime -based checking. The primary factors influencing this choice are
listed below.

− Can be applied to code already written
− Provides the most capability without user input
− Does not require buy-in to a particular design model
− Programming-language independence
− Addresses the widest range of errors
− Works when not all code is available as source code

With the tool paradigm selected, the team started the detailed design of what specific
errors this runtime -based checking tool would address. The set of analysis rules were
chosen very pragmatically. The team commenced to design and implement the
largest set of runtime checking that we could reasonably expect to complete within
the time and resource constraints of 5-6 engineers and 6-12 months design and
implementation. Additional analysis rules have been added in on-going releases.

3 Visual Threads Architecture

Visual Threads integrates many distinct technologies into a single development tool to
hide the underlying complexity, and make it easy to use. The primary components
that make up Visual Threads are listed below.

− Graphical User Interface implemented in Java
− An optional connection from the user interface to the analysis engine running on a

remote server via the Java Remote Method Invocation facility
− Analysis engine implemented in C++ and accessed via Java native method calls
− Shared-memory transport between analysis engine and application to be analyzed
− A binary instrumentation tool to add analysis code into an existing application
− A POSIX threads implementation that provides data gathering hooks

These technologies and components are used together to enable a programmer to
apply the computation power of today’s sophisticated computer systems toward
solving their problem of producing robust, scalable, efficient code.

Fig. 1. The main window of the Visual Threads user interface provides execution controls, and
a summary of thread activity over time. This graph is dynamically drawn in conjunction with
the analysis of the application as it executes.

The primary unit of data processed by Visual Threads is the event. This data is
provided directly from the library that implements the threads programming interface.
A significant state change in the threads library results in an event being generated.
This event is encoded as a small binary record and transmitted from the application
process to Visual Threads via a shared memory ring buffer. Visual Threads uses
these events to model the execution of the application via a state machine. The
runtime checking is then applied to this state machine and any errors detected are
reported via the user interface. In some cases, additional events are generated by
other analysis code that Visual Threads injects into the application executable. In
particular, the support for detecting race conditions on data shared between multiple
threads without synchronization is performed by such injected code. If violations of
this rule are detected, events are generated describing the violation.

4 Automatic Runtime Checking

The heart of Visual Threads’ runtime checking is a set of rules that are applied to the
threads-related activity in the application. The automatic error-detection rules can be
classified into the categories of deadlock, data protection, and other programming
errors. In addition to the error-detection rules, there are rule templates that allow a
programmer to create customized rules to analyze the behavior of their particular
application.

Fig. 2. Rules are enabled, disabled, and created via the Rule Setup dialog. The top section lists
the currently defined rules in the Programming Errors category, if they are enabled, and what
action to take when the rule is violated. The bottom section provides templates that can be used
to create additional rules.

When a given rule is enabled, Visual Threads evaluates the rule condition relative to
the thread events generated by the application. When a rule is violated, Visual
Threads responds with a rule action (such as stopping the application or ignoring the
violation) and provides the necessary data to help diagnose the error in the
application. Consider the following naïve implementation of Dykstra’s classic dining
philosophers problem [2].

#include <pthread.h>

pthread_t philosopher[5];
pthread_mutex_t chopstick[5];

void *dine(void *arg) {
 long left = (long) arg;
 long right = (left + 1) % 5;
 while (1) {
 pthread_mutex_lock(&chopstick[left]);
 pthread_mutex_lock(&chopstick[right]);
 // Eating...
 pthread_mutex_unlock(&chopstick[left]);
 pthread_mutex_unlock(&chopstick[right]);
 sleep(1);
 }
}

void main() {
 // Create chopsticks
 for (int c = 0; c < 5; c++)
 pthread_mutex_init(&chopstick[c], NULL);

 // Create philosophers
 for (int p = 0; p < 5; p++)
 pthread_create(&philosopher[p], NULL,
 &dine, (void *)p);
 sleep(100);
}

When executed under Visual Threads, the following alarm is generated.

Fig. 3. This alarm reports the detection of an inconsistent lock hierarchy during the execution
of the program. The white center area of the dialog is dedicated to describing the actions of the
program that violate the inconsistentOrder rule. Each line in the tables displayed depicts an
action in the program, and provides access to more information about each philosopher
(thread), chopstick (mutex), the callstack, and the location in the source where the action
occurred.

The entire Visual Threads system is targeted for efficient analysis of running
programs. Under the default configuration all rules except those dealing with data
protection are enabled. Each class of rules are described in the following sections.

4.1 Deadlock-Related Rules

The problem of deadlock is common in parallel programming. Deadlock can occur
whenever multiple shared resources are required to accomplish a task. If not done
correctly, two threads may end up each holding one resource but waiting for a second
held by the other thread. If neither releases a resource until they complete their
respective tasks, both will wait indefinitely. Visual Threads detects just this situation
in the use of the POSIX threads programming interface. The set of resources
analyzed by Visual Threads are mutexes, read-write locks (write portion), and threads
(join operations). When a deadlock situation is detected, the error message provides
all the relevant information necessary to diagnose the underlying cause of the error.
For each thread involved in the deadlock, the location where the resource was
acquired, and the location where the thread is waiting for the other resource is
displayed.

Explicit Deadlock. Deadlock is a circularity in the dependency graph for the threads.
It is detected via a simple recursive mark-search algorithm directly applied to the
model representation of the program that Visual Threads constructs as the program
executes. When a thread blocks on a synchronization point, a new marker value is
allocated. A recursive routine is then invoked specifying the thread object and the
marker value. The algorithm for this routine is described in pseudo code below.

CheckDeadlock (object, mark) {
 // If we find current mark, then cycle detected
 if object.mark == mark then report deadlock;

 object.mark = mark;

 for each o on which object depends
 CheckDeadlock (o, mark);
}

There are two noteworthy optimizations used to keep this processing efficient. The
first of these is to invoke the algorithm only when a thread blocks. This avoids
overhead in the case when a lock is not contended (a common case). Fortunately, the
data collection hooks utilized by Visual Threads provide this level of detail, which is
normally only available within the threads library implementation itself. A second
optimization was to eliminate the need to clear previous marks. This was
accomplished by always using a unique mark value on every search. Mark values are
simply a 32-bit integer quantity incremented for every search. While it is
theoretically possible for an application to be executed long enough to perform 232

searches for deadlock, thereby causing mark values to be re-used, the probability of
this is negligible.

Potential Deadlock. While detecting actual deadlock is useful, it is relatively
obvious when it occurs because the application never completes. Visual Threads goes
beyond this, however, to detect various conditions that may lead to deadlock. These
are much more important to ensuring program correctness because they detect

situations that may not typically have any visible symptoms, but at some point in the
future may cause the application to fail. One such rule detects when locks (mutexes
and/or read-write locks) are acquired in an inconsistent order sometime during the
application run. Visual Threads does this by monitoring the lock acquisition order,
and verifying that all future acquisitions are performed in the same order. If the locks
are acquired inconsistently, there is the potential for the application to deadlock.

The algorithm for detecting inconsistent lock order maintains a set of must-not-be-
locked-before relationship pairs. When a new lock is acquired a search is performed
to find any existing lock order pairs involving the new lock and each of the other
locks already held by the thread. Note that the must-not-be-locked-before
relationship is transitive and therefore the search function recursively follows chains
of relationships. If a match is found, an error is reported. The error message (see
Figure 3 as an example) includes each of the locations in the source code that
contributed to the observed lock order. If the search fails to find any inconsistencies
with previous execution behavior, then new must-not-be-locked-before relationship
pairs are created using the new lock and each lock currently held.

If the application was designed based upon a lock acquisition hierarchy (i.e. a
consistent order in which to acquire locks is part of the application definition), then
application-specific rules can be configured that enable Visual Threads to validate
that the lock acquisition order specified by the design is in fact honored.

Priority Inversion. Another deadlock-related rule is the detection of priority
inversion. Visual Threads detects high-priority threads that are waiting for a lock
held by a low-priority thread when another medium-priority thread is currently
executing. This rule, along with a warning about sharing locks between threads of
differing priorities, helps to pinpoint other programming errors that can lead to poor
performance or more drastic failures.

4.2 Data Protection Rules

The most powerful Visual Threads analysis rule finds data shared between multiple
threads without the protection afforded by a mutex, read-write lock, or atomic
hardware instruction sequence. In the rest of this section the generic term lock will be
used to refer to all of those synchronization primitives. Unsynchronized access to
data that is shared between multiple threads and is also modified can result in timing-
related errors such as incorrect results, or memory corruption. The algorithm starts
with the premise that the sharing of a read-write data item d should be governed by
some lock l, or by the implicit synchronization of thread creation or join (a join allows
a thread to wait for the termination of another thread). Violations of this premise are
reported as potential errors in the application being analyzed. There are three
significant facets of the algorithm used to detect and report these potential errors.

− Memory-usage markings to handle initialization, and shared read data.
− Lockset refinement to detect that a lock does not protect the data.
− Thread segment identification to handle create/terminate synchronization

Basic Algorithm. Visual Threads data protection rules are based upon the algorithms
and implementation of the Eraser tool. The complete details of the underlying Eraser
algorithm are available in a separate paper [3], but it can be summarized as follows.
At the start of the algorithm all data is marked as NEW (see Table 1), and is protected
by a candidate lockset containing all the locks in the application.

Table 1. Memory-usage Markings

State Description
NEW Newly allocated memory, not yet accessed, no lock sets.
EXCLUSIVE Memory is identified as being exclusively accessed by a

particular thread, no lock sets.
SHARED Identifies shared, read-only data. The set of locks in effect

during all accesses is updated. No errors are reported.
SHARED-
MODIFIED

Identifies shared, writable data. The set of locks in effect
during all accesses is updated. If empty, an error is generated.

To account for initialization and read-only sharing of data, error reports are deferred
until a data address reaches the SHARED-MODIFIED state, as depicted in Figure 4.
Once a thread modifies the data, it is associated with that thread and marked
EXCLUSIVE. If read or written by any other thread, the memory is then marked
SHARED or SHARED-MODIFIED respectively.

NEW EXCLUSIVE

SHARED SHARED-
MODIFIED

Write
Read

Write,
second
thread

Write

Read,
 second
 thread

Fig. 4. Checking for consistent synchronization is deferred until the memory is actually shared
between two or more threads and is being modified. Earlier state transitions accommodate
memory allocated and initialized by a single thread, then shared with other threads either in a
read-only fashion, or with synchronization.

When the data becomes shared, the candidate lockset presumed to protect the data is
updated. The lockset is reduced to the intersection of the previous lockset and the set
of locks held by the thread on the current access. This progressively removes locks
from the lockset that are only incidentally locked during some access to the data. If
the lockset ever becomes empty an error is reported because no single lock protects
all access to the data. A pseudo-code representation of the Eraser algorithm is
depicted below.

Let locks_held(t) be the set of locks held by thread t.
Let update_use(d,a,t) update the marking of data d
 by thread t using access a as shown in Figure 4.
For each data item d:
 mark[d] := NEW
 lockset[d] := { all locks }

On each access a (read or write) to d, by a thread t:
 update_use(d,a,t)
 if mark[d] in { SHARED, SHARED-MODIFIED }
 lockset[d] := lockset[d] ∩ locks_held(t)
 if mark[d] = SHARED-MODIFIED and,
 lockset[d] = { }, then report error

Thread Segment Extension to Eraser Algorithm. Not all data shared between
threads without the use of a lock is an application error. There are types of indirect
synchronization that may eliminate the need for explicit locks. In particular, a very
common paradigm is for the initial thread to allocate and initialize some data, create
worker threads to perform some transformations on this data, and then after the
threads have all completed, display the result. The original Eraser algorithm was
extended to reduce the number of false reports due to this type of implicit
synchronization, by introducing the concept of thread segment. A thread segment
delineates time in addition to just thread identity. By utilizing the thread segment
identifiers in the algorithm instead of simply using the thread identity, we can
distinguish accesses that cannot happen concurrently. No thread segment spans
beyond the creation of a new thread, or a join. When a parent thread creates a new
child thread, the parent’s thread segment id is updated, and the child’s thread segment
id is assigned. Similarly, after a join operation, the parent’s thread segment id is
updated (the child no longer exists). Each running thread is represented as a leaf in
the graph. Figure 5 shows how thread segments are assigned over time.

 A:

C:

B:

Create

Create

Join

TS1 TS2

Join

TS3 TS4

TS5 TS6 TS7

Fig. 5. A single thread may have many thread segments over time. Thread A creates Thread B,
and Thread B creates Thread C. Thread C synchronizes with Thread A by waiting for it to
terminate. Similarly, Thread C then waits for Thread B to terminate. This results in the seven
thread segments T1 through T7.

These thread segments are kept in a directed graph that indicates which thread
segments cannot occur concurrent with each other. As you can see from Figure 5, S1
happens before TS2-TS7, TS3 happens before TS5-TS7, TS2 happens before TS6
and TS7, and so forth. The modification of the Eraser algorithm to incorporate thread
segments is relatively straightforward.

1. When data d is marked as EXCLUSIVE, associate it with the thread segment id of

the current thread instead of the thread id.
2. If data d is marked as EXCLUSIVE to thread segment TSi, and is being touched by

TSj (where i ≠ j), and TSi happens before TSj in the graph, then instead of moving
the data to one of the shared states, associate d with TS j. The marking remains
EXCLUSIVE.

This extension allows exclusive-use data to be “passed” from parent thread to child
thread (and back) as long as the thread segments involved in the access cannot be
concurrent due to the known points of thread creation and termination (as determined
by the thread segment graph). If the two thread segments are potentially concurrent,
then the data is marked as either SHARED or SHARED-MODIFIED as appropriate
and the standard checking is applied.

Implementation Details . The basic technique used to detect this type of error
involves monitoring every load and store of all global and heap data in the
application. The code for monitoring memory access is injected into an existing
application executable using a binary code modification tool called Atom [4].
Information is maintained for each data address in a corresponding shadow address.
Since access to the state information is very frequent, the shadow data is efficiently
determined by a table lookup and offset calculation. The table lookup is kept small
by using large shadow segments (16MB) to minimize search time on the table. This
table lookup was added for improved robustness necessary in a product, even at the

cost of some additional execution overhead. The data maintained in the shadow area
is listed below.

− Type of sharing (as listed in Table 1)
− Set of locks protecting this data, if marked SHARED or SHARED-MODIFIED.
− Owner thread segment, if marked EXCLUSIVE

Protecting Unsafe Libraries and Functions. In addition to detecting
unsynchronized access to shared data, Visual Threads also allows the definition of
application-specific rules that identify particular libraries or functions that are known
not to be thread safe. There are many extensively used libraries (such as user-
interface toolkits) that are not thread safe. Typically, the programmer must surround
any call to such a library with a lock to prevent other threads from calling into the
library concurrently. Programmers can then identify this requirement, and have
Visual Threads verify that the application has been coded properly.

4.3 Other Programming Error Rules

The remaining error-detection rules validate various facets of using the POSIX
threads programming interface correctly. For the most part, the rules listed below are
simply checks that are performed during state changes in the model maintained by
Visual Threads.

− Detect attempts to relock a non-recursive mutex.
− Detect attempts to unlock a lock the thread did not previously lock.
− Detect when a condition variable is associated with more than one mutex.
− Detect when mixed scheduling policy is used.
− Detect attempts to wait on a condition variable when the mutex is not locked.
− Detect when a thread terminates while holding a mutex or read-write lock.
− Detect when a thread terminates without deleting a stack-local threads object.
− Detect when a terminated thread is neither joined nor detached.
− Detect when stack utilization of a thread exceeds 99%.
− Detect when the threads programming interface returns an error value that

represents a failure that must be handled.

While many of these errors may seem minor, often they have indeterminate effects
upon the application state. This can lead to unexpected behavior at some later time,
which can be extremely difficult to debug due to the distance from the original
problem.

4.4 Detecting Errors by Observation and Heuristics

While this paper has focused primarily on the program validation aspects, Visual
Threads also provides visualization of the state of thread and synchronization objects

in the application, as well as statistical analysis of overall execution behavior. Unlike
the relatively absolute errors detected by rule checking, some errors are recognized
only by the degree of their severity. For this class of errors, Visual Threads provides
a heuristic-based summary of the program execution as shown in Figure 6. The types
of analysis reported in this manner are listed below.

− Locks with high levels of contention
− Locks with granularity that is too coarse
− Level of processor utilization
− Mutex with the highest percentage of contended locks
− Mutex with the highest total wait time
− Mutex with the highest number of concurrent waiters
− Inefficient use of mutex attributes

Fig. 6. The Analysis Summary is automatically displayed when the program completes. In
addition to summarizing errors, it generates observations about the program execution.

Often such analysis is helpful in performance tuning, but it can also highlight
coding or design errors that result in high lock contention, poor lock granularity, or
poor processor utilization.

5 Summary

Visual Threads provides extensive automatic runtime validation of a running
multithreaded application. Through pragmatic selection of targeted analysis and
efficient algorithms, even the most complex application domain can benefit from
automated program checking. While far from exhaustively validating the overall
correctness of a multithreaded application, it can be invaluable in detecting
programming errors that may lead to program instability and unexpected failures.

Visual Threads is available on Compaq’s OpenVMS and Tru64™ UNIX®
operating systems which run on the 64-bit Alpha microprocessor. It is able to analyze
multithreaded programs whether written in C, C++, Fortran, or the Java programming
language.

References

1. 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 196 Edition] Information Technology –
Portable Operating System Interface (POSIX)—Part 1: System Application: Program
Interface (API) [C Language] (ANSI), IEEE Standards Press, ISBN 1-55937-573-6, 1996.

2. Dijkstra, E.W. Co-operating Sequential Processes. Programming Languages , Genuys, F.
(ed.), Academic Press, 1965.

3. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, E.: Eraser: A dynamic
data race detector for multi-threaded programs . ACM Transactions on Computer
Systems (TOCS), 15(4): 391-411, November 1997. Also appeared in Proceedings of the
Sixteenth ACM Symposium on Operating System Principles, October 5-8, 1997, St. Malo,
France, Operating System Review 31(5), ACM Press, 1997, ISBN 0-89791-916-5, pp 27-
37.

4. Compaq Computer Corporation: Compaq Tru64 UNIX Programmers Guide V5.0, July
1999.

